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A theoretical study has been made of the laminar boundary layer on a semi-infinite 
flat plate parallel to a stream consisting of a uniform steady component U ,  normal 
to its leading edge and a periodic sideslip component of the travelling-wave type, 
where the wave travels with velocity Q in the direction of the steady component. It 
is found that the longitudinal flow (that in planes perpendicular to the leading edge) 
is independent of the transverse flow, and satisfies the well-known Blasius equations. 
The transverse flow is governed by a linear partial differential equation which may 
be approximated in different ways for high and low values of the ‘reduced’ frequency 
o. A series-expansion solution for small 0 appears to be valid up to about W = 2; the 
solution for large W is applicable down to W x 10. A third approximation has been 
developed which joins the others smoothly. Numerical solutions of the equations 
for the transverse flow are presented for 0 < is < 40 and Q / U ,  = 0.6 (the value 
appropriate to the Queen Mary College (QMC) ‘gust-tunnels’) and for 73 = 10 and 
0.4 < Q / U ,  < co. The value of Q / U ,  has a profound influence; for values less than 
about one there are large phase lags within the boundary layer ; for large values there 
are phase leads throughout most of the layer. For & / U ,  < 1 the amplitude of the 
oscillation within the boundary layer exceeds that of the external driving oscillation, 
this ‘overshoot’ increasing as the wave-speed ratio diminishes. A t  Q / U ,  = 0.6 peak 
velocities more than 3 times those outside appear within the viscous layer. 

As 6 + 00, the transverse viscous layer becomes thinner ; the oscillatory boundary 
layer, here transverse, becomes a ‘Stokes layer’ and is virtually uncoupled from the 
longitudinal flow. Far downstream the amplitude of the transverse skin-friction 
grows as z: and becomes comparable with the streamwise component even for 
moderate values of the sideslip amplitude. 

Experiments were conducted in one of the QMC gust-tunnels for values of W up 
to 2.0. Measurements of the transverse velocity amplitude and phase profiles confirm 
the ‘low frequency theory’. 

- 

1. Introduction 
The problem considered in this paper is that of a semi-infinite plate immersed in 

a stream of fluid having a uniform, steady component U,, normal to its leading edge 
and a periodic spanwise component w,, of the travelling-wave type, both in the plane 
of the plate. Travelling-wave flows are generated in the Queen Mary College (QMC) 
‘gust-tunnels ’ (see later) which have been developed specifically to study unsteady 
flows. 

Periodic flows have been a subject of study since Stokes (1851) analysed the 
problem of an infinite plate oscillating harmonically in its own plane in an otherwise 
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stationary viscous fluid. There is now a large body of literature on unsteady viscous 
flows, and attention is drawn to  the review by Stewartson (1960) and the recent book 
by Telionis (1981). Here we shall draw attention to a few of the main results relevant 
to periodic laminar boundary layers. 

Lighthill (1954) investigated theoretically the response of a laminar boundary layer 
growing on a cylindrical body to sinusoidal fluctuations of the freestream velocity. 
Analysing the low- and high-frequency cases separately, he found that for small 
amplitudes, the velocity peak within the boundary layer was advanced in phase 
relative to the external stream by angles up to in, the largest phase advance occurring 
a t  the plate (the wall). The phase advance increased with frequency, in being 
the asymptotic value for infinite frequency. Since the velocity at the wall is zero, the 
phase there is obtained from the velocity gradient, so, as Lighthill pointed out, the 
wall shear stress leads the external flow velocity maximum by up to in. His main 
results were confirmed by Lin (1957) for high frequency and by Moore (1957) for low 
frequency, both of whom were able to remove the restriction to small amplitudes. 
A t  high frequencies the viscous effects are confined to a thin layer - the Stokes layer 
- adjacent to the wall; its thickness is of order ( v / w $ ,  where v is the kinematic 
viscosity of the fluid and w the radian frequency. Other studies have been reported 
by Nickerson (1957), Rott & Rosenzweig (1960), Ghosh (1961), Farn & Arpaci (1965), 
Teipel (1970), Ackerberg & Phillips (1972) and by Pedley (1972)’ the last of whom 
presented results for a plane wedge where the only restriction on the amplitude was 
that flow reversal should not occur. Experimental work by Hill & Stenning (1960) 
supports these studies. 

A closely-related problem has been investigated by Patel (1975) and Lam (1983). 
The QMC gust-tunnels (Patel & Hancock 1976) are conventional low-speed wind- 
tunnels in which a periodic travelling-wave type of flow is generated by oscillating 
downstream extensions (flaps) attached to the roof and floor of the contraction nozzle. 
With the semi-open test-section relatively empty, in-phase harmonic oscillations of 
the flaps produce an upwash w, of the form 

w = W,(x,w) sinw(t-z/Q), (1) 

where t is the time, Q is the travelling-wave velocity and the amplitude W,(x, w )  varies 
both with drive frequency w ,  and in some cases with distance z, along the tunnel. 
It is found experimentally that at sufficient distances downstream of the nozzle exit, 
& / U ,  z 0.6 for all frequencies (Ishaq 1984); here U ,  is the mean longitudinal 
velocity component in the test-section. 

With a splitter-plate parallel to the flaps in the flow, the periodicity takes the form 
of a longitudinal travelling-wave 

U = U,+AU,(x ,w)  sin(t-x/Q). (2) 

In this configuration the vorticity shed from the flaps a t  the free edges of the jet 
has an image in the splitter-plate, thus creating a symmetrical flow pattern. Using 
this arrangement, Patel (1975, 1977) examined the behaviour of both laminar and 
turbulent boundary layers growing on a flat plate placed parallel to the flaps. He also 
extended Lighthill’s (1954) analysis to the case of finite Q, and found broad agreement 
with his experimental results. The theory gives significantly different results depend- 
ing upon whether Q is greater or less than U,. In  particular the peak velocities 
reach much greater values for Q < U ,  and large phase lags occur within the boundary 
layer for Q < U ,  in contrast to the phase leads which occur for the standing-wave 
case. In  fact Patel’s (1975) analysis contained an error - he did not properly satisfy 
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the continuity equation - and Lam (1983) has obtained more accurate results. Using 
a differential-difference scheme, Lam (1983) obtained numerical solutions over a wide 
frequency range, and using Q/U, = 0.6, he was able to improve considerably the 
agreement with Patel’s experiments. 

In the problem discussed here the flat plate is placed normal to the flaps in the 
gust tunnel, so that in addition to the steady component U,, in its own plane and 
perpendicular to its leading edge, there is the periodic spanwise component given by 
(1) .  The situation for which solutions are presented has &-too as the special case 
already considered by Wuest (1952). We note that the longitudinal flow is indepen- 
dent of the transverse flow for all values of Q, a result found by Wuest (1952) for 
the standing-wave case and one which is well-known for the yawed semi-infinite plate 
in steady flow (w = 0), see Schlichting (1979). 

The unsteady laminar boundary-layer equations with the given external flow are 
solved separately for small, intermediate and large values of the ‘reduced ’ frequency 
w = wx/U,. At small values of 0, a regular expansion in powers of W reduces the 
partial differential equation for the transverse velocity to a set of ordinary differential 
equations that is solved numerically. The solution is found to be valid for 0 < W < 2 
for all &/Urn. The high-frequency solution does not however ‘match’ at W = 2, so 
a third approach is used in which the streamwise convection term is replaced by a 
finite difference representation, and the resulting ordinary differential equation is 
solved by ‘marching downstream’ from the already-computed solution at W = 1, to 
match the high frequency solution at 3 = 10. The details of the analysis are presented 
in $2, together with some results. They show features similar to those obtained by 
Pate1 (1975) and Lam (1983) for the longitudinal, travelling-wave type of flow. The 
value of & / U ,  has a marked effect, this time on the ‘transverse boundary layer’. 
For low values of Q/ U ,  there are phase lags throughout most of the boundary layer, 
while for large values, the transverse velocity peak within the boundary layer leads 
that in the driving flow. For large values of 0, that is at high frequency or far 
downstream (if the boundary layer remains laminar), there is a ‘Stokes layer’, here 
transverse, accompanied by a boundary layer of conventional thickness. The results, 
which cover a wide range of values of Q/ U ,  and of W, are discussed in $2. In practice 
only a limited number of values of Q/U, are easily achieved, though the range of 
values of W is less restricted. 

Some experiments conducted over the range W < 2, are described in $3, where it 
is shown that they support the low-frequency analysis quite well. 

- 

2. The flat plate in oscillatory sideslip 
2.1. Analysis 

We consider a semi-infinite flat plate occupying the (2, z)-plane in the region x 2 0, 
so that its leading edge lies along the axis Oz. 

An incompressible fluid approaches the plate from x = - 00 so that all velocity 
vectors lie in planes parallel to y = 0, and the velocity field there is given by 

( ~ ~ 2 1 , ~ )  = (U,,O, W,  expiw(t--/Q)), (3) 
in which both W, and Q are assumed constant. We investigate the flow in the region 
x > 0, y 2 0, -a < z < 00, see figure 1. Starting with the three-dimensional, 
unsteady laminar boundary-layer equations, and noting that for a plate of infinite 
span au aw 

aZ aZ = 0, _ -  -- 
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but that 

we obtain 

,- W, exp iw(r - x/Q) 

FIQURE 1 .  The semi-infinite flat plate in oscillatory sideslip. 

au au au azu 

at ax ay ay2 
-+u-+v-= v-, 

-+u-+v-= 1-- iww,+v- 
aw at aw ax aw ay ( ?I ay2  9 

au av 
ax ay -+- = 0, 

subject to the boundary conditions 

u = v = w = O  a t y = 0 ,  

(4) 

(5) 

(7) 

and u -  Um;w - w, = W, expiw(t-x/Q) as y+m. (9) 
The solution of ( 5 )  and (7) subject to these boundary conditions gives au/at = 0 

and the well-known Blasius solution. The longitudinal flow is thus independent of 
the transverse flow. 

Since (6) is linear in w, we can write 

W(X, Y, t )  = W, Y) expW-x/Q),  (10) 

so that 9(",0) = 0, g(x, m)+l. 
We now introduce the Blasius variables and f ,  defined by 

where 1cr is the streamfunction satisfying (7), and obtain, after a little manipulation 
(see Bernstein 1984), 
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with the boundary conditions 

g(W,O) = 0 andg(G, a)+l. (14) 

The function f ( p )  is known (numerically) from the solution of the Blasius equation 
f"'+fS" = 0 with f(0) = f ' ( 0 )  = 0 and f '(a) + 1. The dash denotes differentiation 
with respect to p .  

Equations (13) and (14) have no general analytic solution, but we may examine 
the asymptotic cases of high and low frequency. We note that applying the wall 
boundary conditions to (13) leads to 

so we may expect some critical dependence on Q/U,. 

2.2. High-frequency solution 
2.2.1. Outer region 

obtain as a first approximation in the outer region of the boundary layer 
If we take the simple limit of (13) as W+ 00, the differential terms vanish and we 

Since u(p) has the Blasius profile, there is a singularity within the boundary layer 
if Q < U,. One is tempted to seek a series solution in inverse powers of W in the outer 
region. Writing 

g(W, p )  = ; Q7(p)Z-r ,  
r-0 

we find Go(p) is given by (15) and G,(p) by 

GI =-jf"2(1-u,)u,(f'-x) Q Q  Q -' , 

with succeeding terms having even higher-order singularities at  u = Q. There is thus 
a critical layer around p = p c ,  where p c  is defined by u(pc) = Q. We shall return to 
this point shortly. 

2.2.2. Near-wall region 

the wall f '  x f x 0 to first order and (13) may be approximated by 
The outer solution does not satisfy the wall boundary condition of no slip. Near 

The solution which satisfies g(W, 0) = 0 is 

g = I-- {1-exp[-((1+i)3p]}, (17) ( 2) 
where the exponentially-growing term has been neglected. This is of the same form 
as Lighthill's (1954) solution for the velocity fluctuations in a laminar boundary layer 
subject to an oscillation of the form U ( z , t )  = U ,  + A U ,  expiwt, the only difference 
being the presence here of the term U,/Q. But for the scaling factor (1 - U,/Q), 
which is negative for Q < U,, the transverse velocity profiles here are similar to the 
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streamwise profiles obtained by Lighthill (1954) and Lin (1957). It is interesting that 
while Lighthill’s high-frequency solution satisfies both boundary conditions, (17) 
satisfies the condition at the wall, but not g(oo)+ 1 ; in fact (16) cannot accommodate 
such an  outer condition (unless Q = a), and could only be valid near the wall.? 

An improved approximation near the wall may be obtained$ by noting that at high 
frequency the Stokes lengthscale ( v / w ) i  is much smaller than the Blasius lengthscale 
(2vx/Uco):, so that a new variable 

may be introduced. 
Close to the wall we may use the approximation 

f(7) = if”(0) v2 + 0(Y5)1 
where f”(0) = 0.4696. 

Equation (13)’ written in terms of 5 then becomes 

The form of this equation suggests the expansion 
co 

g ( G  0 = Z G&) G-ir, 
r-o 

g(W,O) = 0, g(W, a ) + l - - .  uca 
Q 

with 

Substituting into (18) and equating like powers of W-: yields 

Go([)  = (1 -$)(I -e-(l+i) 9, 

etc. 

but small 7) substitution into (19a) gives 
Go is the first approximation given by (17).  For large [ (corresponding to large G 

which matches to this order in 7, the behaviour near the wall of the outer solution, 
(15)’ when u / U ,  is written as d”(0). 

The transverse shear stress at the wall is proportional to  (dg/d7)r,o = g’(O) ,  so that 

t Rott & Rosenzweig (1960) discuss an analogous problem in relation to higher-order expansions 

We are indebted to T. J.  Pedley for pointing this out and also for the discussion on the critical 
for Lighthill’s problem. 

layer which follows. 
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The relative phase $, = $ ( O ) - $ ( a )  at  the wall is given, using L’H6pital’s rule, 

so that for T j +  a 
$, = in for Q / U ,  > 1,  

$, = -in for Q / U ,  < 1. 

Equation (21) suggests a variation of only a few degrees over the range 
10 < W < 00, rather smaller than that given by the numerical solution at high 
frequency (see later) from which it departs for W < 40 at Q / U ,  = 0.6. 

2.2.3. Critical layer 

u x Q, we may write 
For Q < U ,  the inviscid solution breaks down near 7 = l; lc.  In this region, where 

f’(7) - &/urn = (7 - ~ c ) f “ ( ~ c )  +O(T-Tc)2, 

and the viscous term in (13) will be of the same order of magnitude as the other terms. 
Rescaling as follows : - 

7 = 3(?p-7c), g = o+g, 
and noting that the Tj(dg/dG) term in (13) is of order i3-t times the leading term, we 
write _ -  

g(w, 7) = gO(T) +w-$gl(Tj) + . . . 
and calculate only the leading term go, for large W. 

The equation for go is then 

where a = f”(7,). 
Equation (22) is essentially Airy’s equation. Writing 

it becomes 

the appropriate solution of which is given by Abramowitz & Stegun (1965) as 

which has the required property that 

One may note that nHi(0) x 1.287 90, so that 

2a U ,  
gO(yc) x 2.5758i 

Thus for Q < U,, the relative phase $(v,) - $( 00 ) + - in for large values of W. 
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0 1 2 3 4 5 

Igl = I~l /Wcc 

- 150" -100" - 50" 0 

m) - Qxm) 

FIGURE 2. Sideslip velocity (a) amplitude profiles, (6) relative phase profiles, for Q / U ,  = 0.6. . . . . . ., 
outer solution, equation (15); -.-.- , near-wall solution, equations (19); ----, critical layer 
solution, equation (23). Numbers on curves indicate values of W. 

The velocity profiles given by (15), (19) and (23) are shown, for &/Urn = 0.6 and 
w = 10 and 40, in figure 2. 

It can be seen that the critical layer analysis successfully smooths out the 
discontinuity of (15) in the neighbourhood of vc, but i t  does not possess the correct 
behaviour either near the wall, 7 = 0, or far from it, 71 + 00. Nor does the solution 
join the near-wall solution smoothly for the two values of w computed, although one 
may note that even at 0 = 40, the near-wall solution is almost tangent to the outer 
inviscid solution, equation (15), as is suggested by (19c) for W - t  a. 

2.2.4. Numerical solution 
A single solution, valid throughout the boundary layer may be obtained numeri- 

cally with relative ease after first reducing (13) to  an ordinary differential equation. 
I n  the near-wall region, the term that arises from the convective derivative dg/dG, 
that is, the term in { } on the right-hand side of (18), is small. In  the critical layer 
region i t  is G-f times the leading term in the equation, and it is clearly small in the 

- 
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outer region. Thus for W large, we neglect the convective term, (13) becomes an 
ordinary differential equation, and if we write 

and substitute into (13) and (14), we obtain the coupled equations 

and 

g&+fgk+2Gg, l-- f = 0, ( 3 

for the real and imaginary parts, with 

Equations (26) and (27) together with the Blasius equation forf have been solved 
numerically, using a fourth-order, Runge-Kutta technique on a microcomputer 
(HewletGPackard, HP 9826A), for Q /  U ,  = 0.6 and a range of values of W. Solutions 
were also obtained for several other values of Q / U ,  in the range of 0.4 to  co, at 
w = 10. In  all computations the outer boundary conditions were applied at q = 10. 
Computational accuracy diminishes as 0 increases for reasons explained by Bernstein 
(1984). Some of the results for Q = 0.6U,,  are shown in figure 3, the normalized 
sideslip amplitude profiles 191 = Jwl/W, being shown in figure 3(a) and the relative 
phase [#(q)  - #( a)] in figure 3 (c). Also shown for comparison in figure 3 are the critical 
layer solution, equations (23) and (24) for W = 10 and 40. 

The velocity profiles exhibit a very marked 'overshoot ' in the magnitude, which 
increases with W. The peak value occurs in the region near which Q = u, as is suggested 
by the outer solution; the peak values o ( W ) ,  shown in figure 3 (b) ,  are well predicted 
by the critical layer analysis, which is also accurate over much of the 'inner region', 
even for W as small as 10. 

The relative phase shows a wide variation through the boundary layer, the response 
lagging the excitation through most of it. There are however, small phase leads, 
$(g )  > #(m), in the outer region for all values of 0, and in a thin inner region, but 
not adjacent to the wall, for the larger values of W there are phase leads approaching 
180" (lags exceeding 180"). For 0 2 10, the phase profiles have a common crossing 
point at q z 1.337 (for Q / U ,  = 0.6) the point where Q = u. The phase lag is however 
slightly less than the 90' predicted by the critical layer approximation. 

Computations at Q /  U ,  = 0.9 do not exhibit a similar characteristic at these values 
of 0, while for Q / U ,  < 0.6, the phase lag is close to 90" a t  g = gc, presumably due 
to  the importance of the factor (1  - U,/Q) .  

Figure 4 shows solutions for several values of Q / U ,  and for W = 10. The profiles 
change markedly with &/Urn,  further data, not shown for clarity, showing that 
Q = [I, is not the critical value (see Bernstein 1984). As Q / U ,  becomes large the 
region of appreciable sideslip-velocity-gradient amplitude becomes thinner, see figure 
4(a); although not shown for clarity, i t  also narrows with increasing 55. Since W 
( =  w x / U , )  may be regarded as either a frequency parameter or a streamwise 
coordinate, the transverse shear stress ,u(aw/ay) response is only significant in a 

- 
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I 1 Equation 

T 

0 1 2 3 4 S 

Igl = Iw l l  w, 

40 

- 1 SO" -100" - SO" 0 
#(a) - d(W ) 

40 

- 1 SO" -100" - SO" 0 
#(a) - d(W ) 

FIQURE 3. High-frequency approximation (a) sideslip velocity amplitude profiles; ( b )  peak 
velocities; (c) relative phase profiles. Numbers on curves indicate values of 5. 0,  critical layer 
solution G = 40; x , critical layer solution 5 = 10. 
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- 300" - 200" -100" 0 

#(?)-#(a) 

FIQURE 4. (a) Normalized sideslip amplitude profiles and, (b )  relative phase angle profiles for 
?3 = 10 and the values of &/Urn indicated. 

narrow region close to the wall for either large x or large w (or both). This is analogous 
to the ' Stokes shear layer ' which appears for streamwise oscillations of a plate in its 
own plane in company with a rather thicker, conventional steady boundary layer 
growing in the mainstream Ox-direction ; here however, the Stokes layer is transverse. 
Before leaving this high-frequency solution, we note that the assumption that 
w(ag/aW) becomes negligible as W becomes large, is justified by the results; g"(q )  is 
at least an order of magnitude larger than Wf '(Ag/AW) for W 2 10. We shall return 
to this point in 32.4. 

- 

For small values of 
expanded as a power 

2.3. Low-frequency solution 
the frequency parameter G we assume that g ( W , q )  may be 
series in (ii3). Thus 

7) = Z (iw)'qr(T). (28) 
r-o 
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Substituting into (13), and again using a prime to  denote differentiation with respect 
to q ,  leads to the following set of equations, in addition to the Blasius equation: 

g;+fg;-2f’gl = 2  1--f g + 2  --1 , ( ? / l o  (: ) 

and the boundary conditions are 

g,(O) = 0 for all r ,  

go(w)+ 1, 

g , ( c o ) + O  for r > 0. 

The solution of (29) subject to these boundary conditions is clearly 

gob) = f’b), (33) 

so that the steady-state solution (w = 0) satisfies the Blasius equation as may be 
expected (see Schlichting 1979). 

With g o ( q )  known, (30) for gl(q) may be solved, followed sequentially by g2, g3, etc. 
Equations (29) to (32) have been solved up to  r = 8 on the HP 9826A using a 

fourth-order Runge-Kutta, a common algorithm being used for all but the first 
equation. Solutions have been obtained for several values of QlU,  including 0.6 and 
infinity. Again the outer boundary conditions were applied at q = 10. By separating 
the real and imaginary parts of equation (28) for g(W, q ) ,  the phase $(W, q )  relative 
to the local external flow can be obtained as 

wgl - W3g3 + 059, - . . . 
go -029, +Wag4 - . . . $(W, q)-$(W,  00) = tan-l (34) 

Since however g,(O) = 0 for all r ,  the relative phase dw, at the wall is obtained using 

(35) 1. 1:. 92(,-1)(0) 

f-l-(2f-l) ’ x (-1) 92,-1(0) 

x ( -  l)f-15jz(r-l) ’ q5w = $(G, 0) - #(G, 00)  = tan-’ 

Because the integration of (31) for g, depends upon the solution for g,.--l, accuracy 
gradually decreases due to rounding errors. Such errors will limit the range of T j  over 
which this low-frequency solution may be applied, although in so far as the functions 
g,.(T) are in general nearly an order of magnitude smaller than gfp1(q)  for T > 5, see 
Bernstein (1984), one would expect the results to be inherently applicable well above 
w = 1. At the lower end we have noted that W = 0 gives the known steady-state 
solution. Here we must interpret 0 = 0 as appropriate to  w = 0 and not x = 0, since 
the boundary-layer equations do not apply close to the leading edge of the plate. 

Figure 5(a) illustrates the sideslip velocity amplitude profiles and figure 5 ( b )  the 
relative phase profiles for Q l U ,  = 0.6 and for 0 < W < 2. The rounding errors 
referred to  earlier begin to be significant for G > 2. Similar results have been obtained 
for other values of the wave-speed ratio, some of those for Q / U ,  --f co being shown 
in figure 6. It will be noticed that whereas the velocity amplitude profiles are 

- 
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4 -  

3 -  

G = O -  A 

G = 0.5 - 

- loOD - 50' 0 

m - C(m) 

FIGURE 5. Sideslip velocity profiles for &/Urn = 0.6; low-frequency solution: (a )  normalized 
amplitude, (a) relative phase angle. 

relatively insensitive to the wave-speed ratio, the relative phase changes from a lag 
for Q l U ,  = 0.6 to a phase lead for Q/Uw+ a. The results for Q/Uw = 1,  not, 
reproduced, show that the amplitude profiles for 0 < is < 2 are insensitive to is, but 
there are velocity lags within the boundary layer relative to the driving oscillation. 
At Q / U ,  = 2, also not shown, the velocity inside the boundary layer leads that 
outside. The change from phase lead to lag at the wall, appears to occur at' 
Q / U ,  x 1.23 for 0 < 6 < 1, though this is weakly dependent upon G. Even though 
#, x 0, there are small phase lags away from the surface at this wave-speed ratio. 

2.4. Intermediate frequency solution 
In  52.2 results were presented for the high-frequency approximation for is 3 10, while 
in $2.3 we have seen that the low-frequency approximation gives results for the range 
0 < iii < 2; in fact for Q / U ,  = 0.6, the letter solution seems to be not too seriously 
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4 1  

7 

0 i.0 

7 

0 0.5 1 .O 

7 

FIQURE 

0 1 O0 20" 30" 5iY 

d(7)-4(w) 

6. Sideslip velocity profiles for &/Urn = OD; low-frequency solution. 

affected by rounding errors up to about W = 3. The questions that arise however are: 
what is the lower limit of W for which the high frequency approximation may be 
used ? and what happens in the intermediate frequency parameter range ? 

Computations have been carried out using the high frequency approximation for 
values of W down to 1. Figure 7 shows comparisons, for Q l U ,  = 0.6, of the high- and 
low-frequency approximations to  the velocity amplitude profiles at W = 1, 2 and 3. 
It is clear that they differ widely from one another, as there is no overlap region. 
Figure 8 shows the relative phase &,, at the wall, throughout the range of W for 
Q l U ,  = 0.6. The discrepancy in the range 1 < W < 3 between the two solutions is 
not large, but the solutions show no sign of joining smoothly. 

Both the high- and low-frequency approximations depend upon assumptions which 
reduce the partial differential equation (13) to sets of ordinary differential equations. 
This considerably eases the problem of numerical solution; indeed i t  makes solution 
possible on a microcomputer. The direct solution of (13) using a finite difference 
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representation is less practical on such a machine. A hybrid approach is however 
possible, as follows. 

The streamwise convection term 2Gf ’(ag/aG) in (13) is expressed in finite difference 
form as 

We now suppose that g(G,r,~) is known and g(G+ AW, 7)  is to be found, and since 
g satisfies (13), we write the latter, using (36) as 

where g = g(G+ AG, 7) and dashes denote differentiation with respect to 7. If an initial 
value of i3 is chosen at which the solution g(G, 7 )  is known, the solution a t  (G+ ATS) 
may be computed using a standard RungeKut ta  procedure to  integrate (37). 
Because W represents the streamwise coordinate, this is equivalent to  computing the 
flow at ( z + A z )  from the known flow a t  the upstream station x. 

Again we separate the real and imaginary parts of g ,  writing 

g(W+AW,q) = G(G+AW,q)+iH(G+AW,q),  (38) 

and (37) becomes the coupled pair 

2G 2G 

AG (2  1 AW 
GL+fGb-- f ’Gn-2G - f ’- 1 H ,  = -- f ’GflPl ,  (39) 

2G 
AG 

and H:+fH;- - f ’Hn+2G 

with the boundary conditions 

G(W+AG,O) = H(W+AG,O) = H(G+AW, CO) = O,\ 
(41) 

Here suffix n represents functions evaluated a t  (W+AG), while n- 1 represents the 
known functions at 0. These equations are very similar to ( 2 6 ) ,  containing only the 
additional terms involving AG. They have also been integrated using a fourth-order 
Runge-Kutta technique - it was necessary only to modify slightly the algorithm used 
earlier - starting with the low-frequency solution a t  W = 1. However the increment 
ATj occurs in (39) and (40) in the denominator, and as G is increased, the coefficient 
w/AG increases, and the numerical solution becomes susceptible to rounding errors, 
particularly in the outer regions of the boundary layer. The inaccuracies increase, 
of course, with increasing G, if AG is kept constant. These errors can be contained 
by not using too small a value of AG, and by increasing it as G increases. Following 
some numerical experiments, computations were carried out, for Q / U ,  = 0 . 6 ,  
varying the step size as the calculation progressed: ATS = 1 from 0 = 1 to  0 = 4;  
ATS = 2 from G = 4 to  25 = 10; and AG = 5 from G = 10 to 0 = 30. The results are 
shown in figures 7, 8 and 9. 

Figure 7 shows that the sideslip velocity amplitude profiles using the intermediate 
frequency approximation agree closely with the low-frequency solution, for 
1 < G < 3, and figure 8 shows that the relative phase &., at, the wall joins the low- 
and high-frequency solutions smoothly a t  W = 3 and G = 10 respectively. The 

and G(G+AG, c0)+1. i 

- 
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intermediate- and high-frequency approximations to the amplitude profiles are 
compared in figure 9, and it can be seen that good agreement is achieved for W 3 10. 
One may note that the inclusion of the streamwise convection termf’(aq/a;i) in 
the solution has a negligible effect for W 2 10, justifying its neglect in the high- 
frequency approximation. 

2.5. Further discussion 

The fact that solutions for large 0 are virtually independent of streamwise convection 
is interesting, since i t  implies that the transverse flow far downstream at a fixed 
frequency w is only weakly influenced by the upstream flow. The transverse 
component of the wall shear stress (skin friction) is given by 

aW 
ryr = p- at y = 0, 

aY 

so that using (10) we readily find that 

where Re, = U ,  x/v. 
Likewise the longitudinal skin-friction component is given by the Blasius relation 

[&Iw (Re,)+ = 1 / 2 f ” ( 0 )  = 0.6641. (43) 

Since the relative phase at the wall is calculated using the gradients (ag/aV), the 
phase of the transverse wall friction is given by figure 8 for Q / U ,  = 0.6. The 
magnitude of the transverse skin friction is proportional to (dg/aq), and its amplitude 
is plotted in figure 10 as a function of W, for Q / U ,  = 0.6. 
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We see that the amplitude of the transverse skin-friction coefficient multiplied by 
(Re,)$ initially increases rapidly with W, before levelling off dipping a little, and then 
increasing again. For large values of W, the increase appears to be nearly linear, but 
according to (20),  at large 0. 

so that (45) 

Equation (44) is also shown on figure 10 for Q / U ,  = 0.6. Assuming the behaviour 
represented by (45) is correct, we see that for a fixed w ,  the transverse component 
of the skin friction approaches a constant value while the longitudinal component 
decreases as l / d .  Their ratio is 

and since the analysis is applicable for arbitrary values of W ,  it may reach significant 
values downstream even for moderate values of W,/U, .  

Finally we may note that since the governing equation is linear in w, solutions for 
different frequencies may be added, and in principle at least, the response to an 
arbitrary sideslip function w,(t) computed. 

3. Experiments 
3.1. Apparatus 

The experiments were conducted in the smallest of the QMC gust-tunnels, a blowdown 
wind-tunnel driven by a centrifugal fan powered by a 5.5 kW a x .  motor. Filtered 
air is passed to  a settling chamber, equipped with wire screens and a honeycomb to 
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reduce turbulence, from which it enters a two-dimensional contraction nozzle of area 
ratio 6.25. The downstream end of the contraction is 200 mm in height and of width 
800 mm. Contiguous with the upper and lower walls (roof and floor) at  the nozzle exit 
is a pair of full-width flaps of chord 180mm, hinged at their upstream end. 
Mechanically coupled together in-phase, they are driven sinusoidally by a !j h.p. d.c. 
motor, the speed of which is continuously variable to give oscillation frequencies 
between 2 Hz and 18 Hz. The test-section has sidewalls but no roof or floor. The static 
pressure in the 'semi-open' test region is thus essentially the ambient pressure in the 
laboratory. The mean wind-speed in the tunnel is controlled by a thyristor-controller 
giving a range from 3 m/s to 18.5 m/s. 

The relevant performance characteristics in the unsteady mode are summarized 
in figure 11 (a, b) where the variations in the amplitude W,, of the sinusoidal upwash 
and in the wave velocity &, are shown. It will be noted that the tests to be described 
were conducted in a region where & is uniform and the amplitude W, varies very 
little. 

The flat plate model consisted of a stiffened, single sheet of aluminium, 2 mm in 
thickness, with one of its edges chamfered at 5' to provide a well-defined sharp leading 
edge. The plate was of chord lo00 mm and span 510 mm, so that mounted vertically 
in the centreplane of the test-section (that is, perpendicular to the flaps), the 
chordwise edges were well outside the flow. It was provided with pressure tappings 
and a trailing-edge flap so that it could be set with zero pressure gradient and with 
the stagnation point on the plane, unchamfered surface just aft of the leading edge, 
which was positioned 165 mm downstream of the trailing-edges of the nozzle flaps, 
so as to be in the region in which &/Urn is fairly uniform. 

The mounting ensured that with the nozzle flaps oscillating, no signs of vibration 
of the plate were apparent. 

The frequency of oscillation of the flaps was measured by means of a slotted disk 
mounted on the final drive shaft to the flaps. The edge of this disk passed between 
the infra-red source and detector of an optical switch enabling a resolution of 0.01 Hz 
to be achieved. 

A flattened pitot tube and a constant-temperature, hot-wire anemometer probe 
together with a linearizer circuit and a digital voltmeter were used for checking the 
steady laminar boundary-layer velocity profile and also for calibrating the probe- 
positioning device as will be explained in $3.2. 

A single hot-wire probe and linearizer were also used to investigate the oscillatory 
boundary layer, the wire being orientated parallel to the surface of the plate but a t  
45' to its leading edge. Such an anemometer probe responds to both the streamwise, 
u-component and the transverse, w-component of velocity. However the u-com- 
ponent is steady while the w-component is purely oscillatory, so that the latter is 
easily extracted using a d.c. blocking filter. 

All the probes were positioned using a manually-operated screw (Unislide) having 
a resolution of 0.01 mm in the direction perpendicular to the plate. 

The relative phase +(q)  - g5( 00) was measured by a specially-developed, digital 
phase meter, since no instrument was available with the required resolution at low 
frequencies. Essentially this phase meter measures the average time between the 
zero-crossings of the a.c. components of the measuring and reference signals and 
compares this with the period of the oscillations. The instrument, which is more fully 
described by Ishaq (1984), has a resolution better than 1' a t  all the frequencies of 
interest here. It was also used to measure the wave speed &, using two hot-wire 
anemometers a known distance apart. 
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FIQURE 1 1 .  Gust-tunnel characteristics: (a) transverse velocity amplitude W,, vuB. distance X, 
downstream of the nozzle exit and frequency/Hz (indicated on figure) for U ,  = 5.19 m/s; ( b )  
wave velocity ratio &/Urn vs. oX/U,; 0, U ,  = 5.19 m/s; +, U ,  = 13.3 m/s. 
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3.2. Preliminary experiments and calibrations 

With the trailing-edge flap set at about yo, the pressure gradient in steady flow was 
less than 1 mmH,O/m, and it was maintained at  this angle for all the subsequent 
experiments. Using the flattened Pitot tube several velocity profiles u ( y ) ,  were 
measured to gauge the extent of the laminar boundary-layer region. The Pitot was 
then replaced by a single hot-wire anemometer for more detailed measurements. 

One of the difficulties associated with using a hot-wire probe for boundary-layer 
studies is measuring accurately its distance y ,  from the surface. Because of its fragility 
it cannot be allowed to touch the plate, so its 'initial ' position is somewhat uncertain 
even though incremental distances can be set very accurately. This problem was 
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overcome in the following way. The steady velocity profile data, plotted using Blasius 
coordinates were found to follow closely the Blasius profile, see figure 12. All 
subsequent steady profiles were assumed to be similar in the laminar boundary-layer 
region. Before making unsteady measurements at any station, a steady profile was 
measured and used to calibrate the ‘initial ’ probe position; other positions were given 
by incremental settings on the micrometer screw. The probe and linearizer were 
frequently checked for zero-offset and linearity of voltage output with windspeed, 
so that velocity ratios could be obtained easily. 

With the test-section semi-open, the upper and lower boundaries were free-mixing 
shear layers. The spread of these turbulent mixing regions restricted the spanwise 
extent of the laminar boundary layer growing on the plate. With the nozzle flaps 
stationary at both their extreme positions, the encroachment of the mixing regions 
into the core flow was measured. Steady boundary-layer profiles were also measured 
50 mm off the centreline at  several distances from the leading edge and the hot-wire 
output was observed on a CRO for signs of turbulence over a wide region near the 
surface of the plate. In  this way one could ensure that the experiments in the 
periodically -driven boundary layer were conducted in a laminar region. 

3.3.  Experiments in the unsteady boundary layer 
All the unsteady measurements in the boundary layer were conducted on the 
centreplane. Most of them were made at  a single station, 110 mm from the leading 
edge at a mean windspeed of 5.1 m/s, thus ensuring a reasonably thick boundary 
layer, about 2.5 mm, in which to work. A t  each distance y ,  from the surface the flap 
oscillation frequency was varied in the range 4-18 Hz and the phase measured. Each 
result is the mean of ten successive readings, the number of cycles over which each 
reading was averaged by the phase meter being 80. For most of the measurements 
the reference oscillation was provided by a displacement transducer following the 
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motion of the flaps. Some measurements were repeated with a second hot-wire probe, 
outside the boundary layer and somewhat upstream, providing the reference signal. 
Additional measurements were made further from the leading edge and at appropriate 
mean wind speeds U,, but it was only possible to cover the range of reduced 
frequency W = wx/U, ,  up to  2.0. Measurements of the amplitude profiles w(y). were 
made under similar conditions during separate traverses. 

4. Analysis and discussion of results 
From the steady laminar boundary-layer velocity profiles shown in figure 12 one 

may conclude that the boundary layer is laminar for Reynolds numbers U ,  x/v, up 
to a t  least lo5 and was laminar for the unsteady measurements which were made at 
Reynolds numbers -well below this. Figure 12 also justifies the use of the Blasius profile 
for calibrating the probe. 

The regions of turbulence nearest to the measuring stations, arise from the mixing 
in the free shear layer bounding the upper and lower edges of the test region, but 
they are believed to be sufficiently far away as not to affect the unsteady laminar 
boundary-layer results. This belief is justified by the steady results shown in figure 
12 and also by the unsteady results themselves. 

A large body of data for the laminar boundary layer on the plate with the external 
flow in periodic sideslip was collected essentially as curves of relative amplitude and 
phase along lines of constant 7 (or y) and varying W, for W < 1. The phase reference 
for these measurements was taken from the flap motion. For comparison with the 
theoretical predictions these data were cross-plotted to give the relative phase 
#(q)-#(m), and amplitude ratio w(v)/W,, profiles for constant W. The values of 
#(a) and W, were taken as equivalent to  those measured at 7 x 4 since no further 
changes were detected for greater values. Data for W = 1.5 and 2.0 were obtained by 
appropriately setting the values of o, x and U ,  to achieve these values. The results 
are summarized in figures 13 and 14 which also show the computed profiles for 
comparison. 

Although the phase measurements were effectively the result of averaging over 800 
cycles of the external flow oscillation, the data, open symbols on figure 13, for 0 = 0.8 
and W = 1 .O showed unexpectedly large scatter. It was suspected that this arose from 
the use of the flap motion to provide a phase reference, the relative phases being the 
differences of comparatively large values. A second hot-wire probe was therefore used, 
outside the boundary layer and 103 mm upstream of the measuring probe, to  provide 
the phase reference for a repeated set of measurements a t  i3 = 0.8 and iG = 1 .O. These 
data are shown as filled symbols on figure 13. The scatter is somewhat reduced, but 
there was a further advantage because with the measuring probe also outside the 
boundary layer, the measured phase shift represents the wave-speed ratio Q /  U, .  The 
particular values measured in these cases were Q / U ,  = 0.544 at i3 = 0.8 and 
Q /  U ,  = 0.568 a t  0 = 1 .O and the corresponding theoretical curves are also shown 
in figure 13. The sensitivity of the phase to  Q / U ,  diminishes with increasing W and 
no corresponding calculations and measurements have been conducted for i3 > 1.0. 

The results confirm not only that there is a transverse (sideslip) velocity phase lag 
within the boundary layer for Q / U ,  x 0.6, but also shows that the theory predicts 
the values quite well. 

Similarly good agreement is demonstrated in figure 14 between the measured and 
computed transverse velocity amplitude ratio profiles, which are much less sensitive 
to &/Urn.  As predicted there is an amplification factor greater than one in part of 
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the boundary layer for reduced frequencies W greater than about 1.5 at Q l U ,  w 0.6, 
and this amplification increases with W. Since T j  = w x / U ,  may be regarded as the 
streamwise coordinate at constant frequency w ,  the maximum amplitude of the 
oscillation within the boundary layer increases with distance downstream as predicted, 
a t  least up to  0 = 2.0. 

One may also conclude that the small variation of the amplitude W,, of the imposed 
transverse velocity oscillation with distance x downstream (sce figure 11 a ) ,  has very 
little effect on the results. 

5. Conclusions 
The analysis has shown that with a finite wave velocity, the longitudinal flow is 

independent of the oscillatory transverse (sideslip) flow. 
This transverse flow is governed by a linear partial differential equation in two 

independent variables which may be further reduced to an ordinary differential 
equation for the two extremes of high- and low-frequency parameter W = wx/U,. 
For W small, a series-expansion solution appears to  be valid up to W w 2; the large 
w approximation, obtained by neglecting the streamwise convection term, is valid 
down to W w 10. A differential-difference equation has been used for the range 
1 < W < 10, and this joins the other solutions smoothly. 

For Q / U ,  < 1 and W = 10 there are large phase lags within the boundary layer 
compared with the external driving flow; for large values of the wave-speed ratio, 
there are phase leads within most of the viscous layer the changeover from lag to  
lead occurring very near, but not a t  Q /  U ,  = 1. 

At low values of W the changeover from lag to  lead is complicated, but a t  the wall 
occurs a t  Q /  U ,  x 1.23. 

The sideslip velocity amplitude profiles are also critically dependent upon the 
wave-speed ratio, large ‘overshoots’ appearing for low values of Q l U , ;  at 
Q / U ,  = 0.6, the peak amplitude within the viscous layer is more than three times 
that of the driving oscillation. 

As W becomes very large, the transverse oscillatory boundary layer becomes very 
thin; i t  is then a ‘Stokes shear layer’ and is virtually uncoupled from the longitudinal 
flow. Also for large W the downstream transverse flow is only weakly dependent on 
the upstream conditions, and the amplitude of the transverse skin friction can reach 
values comparable with the local longitudinal skin friction. 

Measurements have been made, a t  values of the frequency parameter W = wx/ U ,  
up to 2.0. The relative phase and amplitude profiles are in very good agreement with 
those predicted. I n  particular the measurements confirm that there are phase lags 
within the boundary layer for travelling-wave velocities Q x 0.6U,, in contrast to 
the phase leads predicted for the standing-wave case (&+a) and also that for 
w > 1.5 approximately, there are sideslip velocity amplification factors greater than 
one for Q w 0.6U,. 

- 

- 
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